skip to main content


Search for: All records

Creators/Authors contains: "Erisman, Brad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less
  2. Abstract Tropical cyclones play an increasingly important role in shaping ecosystems. Understanding and generalizing their responses is challenging because of meteorological variability among storms and its interaction with ecosystems. We present a research framework designed to compare tropical cyclone effects within and across ecosystems that: a) uses a disaggregating approach that measures the responses of individual ecosystem components, b) links the response of ecosystem components at fine temporal scales to meteorology and antecedent conditions, and c) examines responses of ecosystem using a resistance–resilience perspective by quantifying the magnitude of change and recovery time. We demonstrate the utility of the framework using three examples of ecosystem response: gross primary productivity, stream biogeochemical export, and organismal abundances. Finally, we present the case for a network of sentinel sites with consistent monitoring to measure and compare ecosystem responses to cyclones across the United States, which could help improve coastal ecosystem resilience. 
    more » « less
  3. Abstract

    In light of rapid shifts in biodiversity associated with human impacts, there is an urgent need to understand how changing patterns in biodiversity impact ecosystem function. Functional redundancy is hypothesized to promote ecological resilience and stability, as ecosystem function of communities with more redundant species (those that perform similar functions) should be buffered against the loss of individual species. While functional redundancy is being increasingly quantified, few studies have linked differences in redundancy across communities to ecological outcomes. We conducted a review and meta‐analysis to determine whether empirical evidence supports the asserted link between functional redundancy and ecosystem stability and resilience. We reviewed 423 research articles and assembled a data set of 32 studies from 15 articles across aquatic and terrestrial ecosystems. Overall, the mean correlation between functional redundancy and ecological stability/resilience was positive. The mean positive effect of functional redundancy was greater for studies in which redundancy was measured as species richness within functional groups (vs. metrics independent of species richness), but species richness itself was not correlated with effect size. The results of this meta‐analysis indicate that functional redundancy may positively affect community stability and resilience to disturbance, but more empirical work is needed including more experimental studies, partitioning of richness and redundancy effects, and links to ecosystem functions.

     
    more » « less